The patterns of wingless, decapentaplegic, and tinman position the Drosophila heart

نویسندگان

  • Wendy K. Lockwood
  • Rolf Bodmer
چکیده

Two secreted signaling molecules, wingless (wg) and decapentaplegic (dpp), are required to specify the heart in Drosophila. wg and dpp are also required to specify other cell types within the mesoderm and in many other regions of the embryo. Because the spatial patterns of wg and dpp are dynamic, different populations of mesodermal cells are exposed to different combinations of wg and/or dpp at different times. To determine whether the patterns of wg and dpp expression provide unique positional information for the specification of heart precursors, we altered these patterns. Our data suggest that wg and dpp contribute progressively to the elaboration of the expression pattern of the mesoderm-specific homeobox-containing gene tinman (tin), and that the overlap of wg and dpp at an early stage (9) as well as at a later stage (11) in the presence of tin-expressing cells directs cardiac-specific differentiation. Furthermore, ectopic tin expression in the ectoderm at wg/dpp intersects (the primordia of the thoracic imaginal disks) also leads to cardiac-specific differentiation, suggesting that tin confers mesoderm-specificity to the wg/dpp response. We conclude that ectopic heart can be generated by altering the patterns of wg and dpp within the tin-expressing mesoderm, or by ectopic induction of tin within the wg- and dpp-expressing ectoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac enhancer activity of the homeobox gene tinman depends on CREB consensus binding sites in Drosophila.

The Drosophila homeobox gene tinman plays a critical role in subdividing the early mesoderm. In particular, tinman is absolutely required for formation of the heart and visceral mesoderm. tinman expression is initiated throughout the mesoderm of the trunk region under the control of the bHLH transcription factor encoded by the twist gene, a determinant of all mesoderm. Later, tinman expression ...

متن کامل

Expression patterns of hedgehog, wingless, and decapentaplegic during gut formation of Gryllus bimaculatus (cricket)

We observed expression patterns of hedgehog (hh), wingless (wg), and decapentaplegic (dpp) during gut development of Gryllus bimaculatus (the cricket), a typical hemimetabolous insect, and compared with those observed in Drosophila, a typical holometabolous insect. Gryllus hh(Gbhh) and Gbwg are expressed in both foregut and hindgut, while Gbdpp is expressed only in the hindgut: at the boundarie...

متن کامل

Ras Pathway Specificity Is Determined by the Integration of Multiple Signal-Activated and Tissue-Restricted Transcription Factors

Ras signaling elicits diverse outputs, yet how Ras specificity is generated remains incompletely understood. We demonstrate that Wingless (Wg) and Decapentaplegic (Dpp) confer competence for receptor tyrosine kinase-mediated induction of a subset of Drosophila muscle and cardiac progenitors by acting both upstream of and in parallel to Ras. In addition to regulating the expression of proximal R...

متن کامل

Specification of the embryonic limb primordium by graded activity of Decapentaplegic.

Two thoracic limbs of Drosophila, the leg and the wing, originate from a common cluster of cells that include the source of two secreted signaling molecules, Decapentaplegic and Wingless. We show that Wingless, but not Decapentaplegic, is responsible for initial specification of the limb primordia with a distal identity. Limb formation is restricted to the lateral position of the embryo by nega...

متن کامل

Involvement of pannier and u-shaped in regulation of Decapentaplegic-dependent wingless expression in developing Drosophila notum

In developing Drosophila notum, wingless expression is regulated by Decapentaplegic signaling positively and negatively so that only notal cells receiving optimal levels of Decapentaplegic signals express wingless (Sato et al., 1999b. Development 126, 1457-1466). Here, we show evidence that this Decapentaplegic-dependent regulation of notal wingless expression includes plural mechanisms, involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2002